Series 5800 Pump
Model: 58XX-XX01-B744
Flow Range: Open Flow = .69-.98 GPM
At 130 PSI = .29-.45 GPM

COMPLETING THE PART NUMBER:

58XX-XX01-B744

- Steel Mounting Plate (Other Types Available)
- Desired Shut-off Pressure & Code
 0 = None
 D = 50PSI
 H = 90PSI
 L = 130PSI
 A = 30PSI
 E = 60PSI
 I = 100PSI
 B = 40PSI
 F = 70PSI
 J = 110PSI
 C = 45PSI
 G = 80PSI
 K = 120PSI
- See Performance Data for Recommended By-pass Pressure and Code
- Pressure Control Options
 0 = No Control (Waiver Required)
 1 = Pressure Switch Control (Select Desired Shut Off Pressure)
 2 = Pressure Relief Valve (Select Recommended By-Pass Pressure)
- Select Pumphead Model From Performance Data Chart
 3 = Open Ports for 3/8” Compression Fitting
 5 = Push-to-Connect Ports for 3/8” Tubing

SPECIFICATIONS:

- MOTOR:
 TYPE: 12 VDC, Permanent Magnet, Totally Enclosed, Non-Ventilated
 LEADS: 14 AWG, 12” LONG
 TEMP. LIMITS: For User Safety, Optimal Performance, and Maximum Motor Life, This Motor is Equipped with a Thermal Protector that Limits the Motor Shell Temperature to 145°F (63°C), as Shown on the Heat Rise Graph.
 DUTY CYCLE: See Heat Rise Graph

- PUMP DESIGN:
 3 Chamber Diaphragm Pump, Self Priming, Capable of Being Run Dry

- TYPICAL APPLICATION:
 Industrial Grade Water Transfer

- MATERIALS:
 HOUSINGS: Nylon
 VALVES: EPDM
 DIAPHRAGM: Santoprene
 FASTENERS: Stainless Steel

- LIQUID TEMPERATURE: 170°F (77°C) Max.

- PUMP CERTIFICATIONS:
 NSF Standard 58

- PRIMING CAPABILITIES:

<table>
<thead>
<tr>
<th>PRIME (FEET)</th>
<th>58X0</th>
<th>58X1</th>
<th>58X2</th>
<th>58X3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime</td>
<td>4.5</td>
<td>5.5</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

- FITTINGS:

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SHAPE</th>
<th>KIT NO.</th>
<th>CONNECTS TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8” COMPRESSION</td>
<td>STRAIGHT</td>
<td>25-145</td>
<td>3/8” TUBING</td>
</tr>
<tr>
<td>3/8” COMPRESSION</td>
<td>ELBOW</td>
<td>25-146</td>
<td>3/8” TUBING</td>
</tr>
<tr>
<td>3/8” STEM</td>
<td>STRAIGHT</td>
<td>25-144</td>
<td>3/8” JOHN GUEST PUSH-ON FITTING</td>
</tr>
</tbody>
</table>

WEIGHT: 6 lbs.
PERFORMANCE DATA

<table>
<thead>
<tr>
<th>PRESSURE (PSI)</th>
<th>58X0 FLOW (GPM)</th>
<th>58X0 CURRENT (AMPS)</th>
<th>58X1 FLOW (GPM)</th>
<th>58X1 CURRENT (AMPS)</th>
<th>58X2 FLOW (GPM)</th>
<th>58X2 CURRENT (AMPS)</th>
<th>58X3 FLOW (GPM)</th>
<th>58X3 CURRENT (AMPS)</th>
<th>BY-PASS PRESSURE (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>0.29</td>
<td>4.10</td>
<td>0.24</td>
<td>4.65</td>
<td>0.32</td>
<td>5.75</td>
<td>0.45</td>
<td>6.60</td>
<td>160</td>
</tr>
<tr>
<td>120</td>
<td>0.32</td>
<td>4.00</td>
<td>0.32</td>
<td>4.40</td>
<td>0.37</td>
<td>5.50</td>
<td>0.50</td>
<td>6.45</td>
<td>150</td>
</tr>
<tr>
<td>110</td>
<td>0.34</td>
<td>3.75</td>
<td>0.36</td>
<td>4.15</td>
<td>0.45</td>
<td>5.15</td>
<td>0.58</td>
<td>6.10</td>
<td>140</td>
</tr>
<tr>
<td>100</td>
<td>0.37</td>
<td>3.55</td>
<td>0.40</td>
<td>3.90</td>
<td>0.50</td>
<td>4.80</td>
<td>0.63</td>
<td>5.70</td>
<td>130</td>
</tr>
<tr>
<td>90</td>
<td>0.40</td>
<td>3.40</td>
<td>0.44</td>
<td>3.70</td>
<td>0.55</td>
<td>4.45</td>
<td>0.69</td>
<td>5.30</td>
<td>120</td>
</tr>
<tr>
<td>80</td>
<td>0.42</td>
<td>3.20</td>
<td>0.48</td>
<td>3.45</td>
<td>0.61</td>
<td>4.05</td>
<td>0.74</td>
<td>4.85</td>
<td>110</td>
</tr>
<tr>
<td>70</td>
<td>0.45</td>
<td>3.00</td>
<td>0.52</td>
<td>3.20</td>
<td>0.63</td>
<td>3.80</td>
<td>0.79</td>
<td>4.50</td>
<td>100</td>
</tr>
<tr>
<td>60</td>
<td>0.48</td>
<td>2.75</td>
<td>0.55</td>
<td>2.90</td>
<td>0.69</td>
<td>3.50</td>
<td>0.82</td>
<td>4.10</td>
<td>90</td>
</tr>
<tr>
<td>50</td>
<td>0.50</td>
<td>2.50</td>
<td>0.58</td>
<td>2.65</td>
<td>0.74</td>
<td>3.20</td>
<td>0.85</td>
<td>3.70</td>
<td>90</td>
</tr>
<tr>
<td>40</td>
<td>0.54</td>
<td>2.25</td>
<td>0.61</td>
<td>2.30</td>
<td>0.77</td>
<td>2.80</td>
<td>0.87</td>
<td>3.30</td>
<td>90</td>
</tr>
<tr>
<td>30</td>
<td>0.58</td>
<td>2.00</td>
<td>0.63</td>
<td>2.00</td>
<td>0.81</td>
<td>2.45</td>
<td>0.90</td>
<td>2.85</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>0.62</td>
<td>1.65</td>
<td>0.66</td>
<td>1.70</td>
<td>0.85</td>
<td>2.00</td>
<td>0.92</td>
<td>2.40</td>
<td>90</td>
</tr>
<tr>
<td>10</td>
<td>0.66</td>
<td>1.40</td>
<td>0.71</td>
<td>1.50</td>
<td>0.87</td>
<td>1.70</td>
<td>0.95</td>
<td>2.00</td>
<td>90</td>
</tr>
<tr>
<td>OPEN</td>
<td>0.69</td>
<td>1.30</td>
<td>0.79</td>
<td>1.40</td>
<td>0.90</td>
<td>1.50</td>
<td>0.98</td>
<td>1.70</td>
<td>90</td>
</tr>
</tbody>
</table>

PERFORMANCE MEASURED WITH FLOODED INLET (0 PSI), 70°F (21°C) AMBIENT AND WATER TEMPERATURE, AND VOLTAGE CONTROLLED AT 12 VDC. POSITIVE INLET PRESSURE WILL INCREASE THE DISCHARGE PRESSURE BY A SIMILAR AMOUNT, FOR A GIVEN FLOW. MAXIMUM INLET PRESSURE IS 60 PSI.

SHADED AREA DENOTES CONTINUOUS OPERATION CAPABILITY AT DESIGNATED PRESSURE AND CURRENT.

HEAT RISE

The shaded area in both the Performance Data and Heat Rise charts, contains pumps with current levels that are capable of running without periodic cool down. Pumps in this category will generally transfer more water over sustained periods than those in the unshaded areas, which are required to shut down while the motor cools. Some applications require maximum flows at high pressures for relatively short periods, however, so an explanation of thermal protection follows:

1. The Heat Rise graph plots the highest current that can run without ever leaving the Shaded Area, in this case, 5.50 amps. All pumps with lower operating currents may also run continuously, unless the surrounding air temperature exceeds 70°F (21°C).
2. The other curve shown is the highest flow and pressure model offered, the 58X3. At 130 PSI, this pump will flow .45 GPM, drawing 6.00 amps.
3. The motor driving all of these pump models has a built in thermal protector that will open, shutting off the pump, when the surface temperature of the motor heats to approximately 145°F. After the initial room temperature heat rise as shown, the model 58X3 reaches the shut off temperature after about 50 minutes of run time, pumping about 22 gallons at 130 PSI.
4. Motors of this size and construction require 20 to 40 minutes of cooling time before the thermal protector closes and re-energizes the pump. Lower current levels heat more slowly, allowing longer run times, but the cool down time still averages about 30 minutes, at 70°F ambient temperature.
5. Your application may call for short bursts of water, consuming far less than the 45 minutes of sustained operation. Start up current exceeds normal running current, however, so cycling should be limited to 6 times per minute.

ALL PERFORMANCE AND HEAT RISE FIGURES ARE APPROXIMATE. ACTUAL VALUES WILL VARY WITH AMBIENT CONDITIONS.